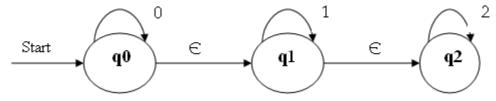


ST.ANNE'S

COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
(An ISO 9001:2015 Certified Institution)
ANGUCHETTYPLAYAM, PANRUTI – 607 106.

QUESTIONS BANK

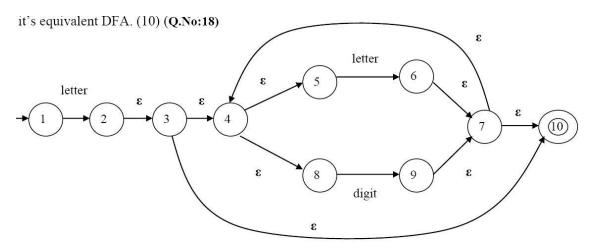

CS6503-THEORY OF COMPUTATION

UNIT-1

FINITE AUTOMATA

PART-A

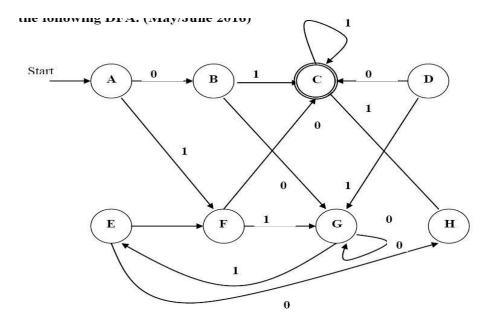
- 1. What is a finite automaton? (Nov/Dec 2015)
- 2. What are the Applications of Automata theory? [May 2008]
- 3. What is Induction principle? Give an example. [NOV/DEC 2012]
- 4. Draw a non-deterministic automata to accept strings containing the substring 0101. (may-2016)
- 5. State the pumping lemma for regular languages. (may/June 2016)
- 6. Write Regular Expression for the set of strings over {0,1} that have atleast one.(NOV/DEC-2015)
- 7. What is meant by DFA? [MAY/JUNE 2013]
- 8. What is a Non-Deterministic Finite Automaton (NDFA)? (Nov/Dec 2013)
- 9. Obtain the \Box closure of states q0 and q1 in the following NFA with \Box transition?[Dec 2014]



- 10. Define NFA with ε transition. [MAY/JUNE 2013] [APR/MAY 2018]
- 11. Difference between DFA and NFA.
- 12. What is a Regular Expression? [NOV/DEC 2012].
- 13. What are the applications of pumping lemma? [NOV/DEC 2007]
- 14. Construct a DFA for the regular expression aa*bb*.
- 15. What is {10,11}*?
- 16. Construct NFA for regular expression a*b*.
- 17. Construct a DFA that will accept strings on {a,b} where the number of b's divisible by 3.
- 18. Differentiate L* and L⁺.
- 19. Construct the DFA that accepts input string of 0's and 1's not containing 101 as substring. [APR/MAY 2018]
- 20. Differentiate regular expression and regular language.

PART-B

- **1.**Explain inductive proof with example.(13)
- **2.**Write about the various form of proof.(7)
- 3. Prove that "A language L is accepted by some DFA if and only if L is accepted by some NFA"(13)
- 4. consider the following $\epsilon\text{-NFA}$ for an identifier. Consider the $\epsilon\text{-closure}$ of each state and find


it's equivalent DFA.(13) or (14)

5.convert the given NFA to DFA.(13)

state/input	0	1
→ q0	{q0,q1}	q0
q1	q2	q1
q2	q3	q3
*q3	φ	q2

- 6. Write any one example for NFA- ϵ to NFA without ϵ .(6)
- 7. Construct the minimal DFA for the regular expression ($b \setminus a)*baa.(13).$
- 8. Write and explain the algorithm for minimization of a DFA. Using the above algorithm minimize the following DFA. (May/June 2016)(14)

- 9. State pumping lemma with example. (13)
- 10.Describe the closure properties of regular languages. [APR/MAY 2018]
- 11. Determine DFA from a given NFA

$$M = (\{q0,q1\},\{0,1\},\delta,q0,\{q1\})$$
 where is given by

$$\delta \ (qo,0) = \{q0,q\}, \delta \ (q0,1) = \{q1\}, \delta \ (q1,0) = \phi, \ \delta(q1,1) = q0,q1\} \quad [APR/MAY \ 2018]$$

UNIT-II

GRAMMERS

PART-A

- 1.Define a Context Free Grammar. [**May/June 2010**]
- 2. What are the applications of Context free languages? [**Dec 2009**]
- 3. What is: (a) Derivation (b) Sub tree.
- 4. What is an ambiguous grammar? [**Dec 2009**]
- 5. Construct the grammar for the language $L = \{ a_n ba_n | n > = 1 \}$.
- 6.Construct the context-free grammar representing the set of palindromes over $(0+1)^*$ (Nov/Dec 2015)
- 7.Let the productions of a grammar be S \rightarrow 0B, A \rightarrow 0/0S/1AA, B \rightarrow 1/1S/0BB. For the string 0110 find a right most derivation. [**MAY/JUNE 2007**]
- 8.Construct a context free grammar for generating the language $L = \{a^nb^n \mid n \ge 1\}$ (Nov/Dec-2004, 2010, 2013, May-05, 06)
- 9.Convert the following grammar into an equivalent one with no unit productions and no useless symbols $S \rightarrow ABA$, $A \rightarrow aAA \mid aBC \mid bB$, $B \rightarrow A \mid bB \mid Cb$, $C \rightarrow CC \mid cC$.

```
(Nov/Dec 2011)
10. When a grammar is said to be ambiguous? (May 2013) [APR/MAY 2018]
11. Consider the following grammar G with productions (May 2010)
       S→ABC | BaB
       A \rightarrow aA \mid BaC \mid aaa
       B \rightarrow bBb \mid a
       C \rightarrow CA \mid AC.
12.Let G be the grammar S \rightarrow aB|bA, A \rightarrow a|aS|bAA, B \rightarrow b|b|S|aBB. For the string
aaabbabbba find a leftmost derivation.(May/June'07)(Apr/May'08)(Nov/Dec 2015)
13. What do you mean by null production and unit production? Give an example.
14. Construct a CFG for set of strings that contain equal number of a's and b's over
\Sigma = \{a,b\} (May/June 2016)
15. What is meant by left and right sentential form?
16. Find the grammar for the language L = \{a2nbc, where n>1\}
17. Find the language generated by a CFG. G = (\{S\}, \{0, 1\}, \{S \rightarrow 0/1/\epsilon,
S \rightarrow 0S0/1S1/S
18. Define Chomsky Normal Form? [APR/MAY 2018]
19. Derive the rules to remove € productions with an suitable example (Dec'09)
20. Find the grammar for the language L = \{a^{2n}bc, where n>1\}
                                          PART-B
1) Derive the strings a*(a+b00) using leftmost and rightmost derivation for the following
production.(8)
1. E→I
2. E→E+E
3. E→E*E
4. E→(E)
5. I<del>→</del>a
6. I→b
7. I→Ia
8. I→Ib
9. I→I0
10.I→I1
2. Show that the grammar S \rightarrow aSbS \mid bSaS \mid e is ambiguous and what is the language
   generated by this grammar? (Nov/Dec 2006)(8)
3. The following grammar generates the language of Regular expression 0*1(0+1)*.
       S \rightarrow A1B
       A \rightarrow 0A \mid \epsilon
       B→0B | 1B | €
   Give leftmost and rightmost derivations of the following strings
   00101 b) 1001 c) 00011 (May/June 2006) (16)
4. Given the grammar G = (V, \Sigma, R, E), where
  V = \{E,D,1,2,3,4,5,6,7,8,9,0,+,-,*,/,(,)\}
```

 $\Sigma = \{1,2,3,4,5,6,7,8,9,0,+,-,*,/,(,)\}$, and R contains the following rules:

$$E \rightarrow D \mid (E) \mid E+E \mid E-E \mid E*E \setminus E \mid E$$

Find a parse tree for the string 1+2*3. (6) (Nov/Dec 2015) (16)

5. Let G be the grammar $S \rightarrow 0B|1A$, $A \rightarrow 0|0S|1AA$, $B \rightarrow 1|1S|0BB$.

For the string 00110101 find (Apr/May 2004) (May/Jun2007)(8)

- 6. Find the language L(G) generated by the grammar G with variables S, A, B terminals a, b and productions $S \rightarrow aB$, $B \rightarrow bA$, $A \rightarrow aB$.(8)
- 7. If G is a grammar $S \rightarrow SbS \mid a$ prove that G is ambiguous (Apr/May 2004)(8)
- 8. Show that the grammar S \rightarrow a | Sa | bSS | SSb | SbS is ambiguous (8) (Nov/Dec2007)
- 9. Find a derivation tree of a*b+a*b given that a*b+a*b is in L(G) where G is given by $S \rightarrow S+S/S*S/a/b$ (May/June 2007).(8)
- 10. Let G=(V,T,P,S)be a Context free Grammar then prove that if the recursive inference procedure tells us that terminal string W is in the language of variable A, then there is a parse tree with root A and yields w. (Nov/Dec 2015)(16)
- 11. Begin with the grammar

S→ASB/ε

 $A \rightarrow aAS/a$

 $B \rightarrow SbS/A/bb$

- (a) Are there any useless symbols? Eliminate them
- (b) Eliminate ε productions
- (c) Eliminate unit productions
- (d) Put the grammar into Chomsky normal form. (Nov/Dec 2015)(16) [APR/MAY 2018]
- 12. Find the CNF for the following grammar,

 $S \rightarrow aB/bA$

 $A \rightarrow aS/bAA/a$

B→bS/aBB/b. (Nov/Dec 2005) (Nov/Dec 2006)

13. What is the purpose of normalization? Construct the CNF and GNF for the following grammar and explain the steps. [APR/MAY 2018]

 $A \rightarrow C \mid a$

 $B \rightarrow C \mid b$

 $C\rightarrow CDE \mid E$

 $D \rightarrow A \mid B \mid ab \text{ (May/June 2016)}.$

14. Convert the following grammar to GNF

 $S \rightarrow AB$

 $A \rightarrow BS/b$

 $B \rightarrow SA/a$.

UNIT-3

PUSH DOWN AUTOMATA

PART-A

- 1. Define Pushdown Automata. (May/June 2016)
- 2. What are the different types of language acceptances by a PDA and define them. (Nov/Dec 2015)
- 3. Define Deterministic PDA. [APR/MAY 2018]
- 4. Define Instantaneous description (ID) in PDA. (MAY-06/09)
- 5. How do you convert CFG to a PDA.
- 6. State the pumping lemma for CFLs.(May-08)
- 7. Convert the following CFG to a PDA (Nov/Dec 2015)
 - i. $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$
- 8. Does a pushdown Automata has memory? Justify. (May/June 2016)
- 9. Give an example of PDA.(DEC-05)
- 10. Is the language of DPDA and NPDA same? (MAY-06/09)
- 11. Define the languages generated by a PDA using the Two methods of accepting a language.(May-07)
- 12. Construct a PDA to accept a language $\{(an)^n|n>=1\}$ by empty stack. (Dec-09)
- 13. Compare NFA and PDA.(Dec-13)
- 14. Draw the symbols used in PDA.
- 15. Design PDA for the language $L=\{001\}$
- 16. Design PDA for the language L={0011}
- 17. Define NDPDA.
- 18. What are the ways of language acceptance in PDA. [APR/MAY 2018].
- 19. Design DPDA for $L=a^nb^n$ where n>=1.
- 20. Write algorithm for getting production rule of CFG.

PART-B

INSTANTANEOUS DESCRIPTION:

- 1.Design PDA to accept the language $L=\{wcw^R / w=\{0,1\}^*\}(8)$ [APR/MAY 2018]
- 2.Design PDA for the language $L = \{anb2n \mid n \ge 0 \}$ (Nov/Dec 2008) (8)
- 3. Construct a transition table for PDA which accepts the Language L= $\{a3nbn \mid n \geq 0\}$ (16)

- 4.Design a PDA to accept $\{0n \ 1n \mid n \ge 1\}$. Draw the transition diagram for the PDA. Show by instantaneous description that the PDA accepts the string '0011'. (10) (Nov/Dec 2015)(8)
- 5. Construct a pushdown automaton to accept the following language L on $\Sigma = \{a, b\}$ by empty stack L= { $ww^R \mid w \in \Sigma +$ } (May/June 2016)(8)

Problems for converting PDA to CFG:

```
6. Convert the PDA P = (\{q, P\}, \{0, 1\}, \{X, Z0\}, \delta, q, z0) to a CFG if \delta is given by
(a) \delta(q,1,z0) = \{(q,Xz0)\}
(b) \delta(q,1,X) = \{(q,XX)\}
(c) \delta(q,0,X) = \{ (P,X) \}
(d) \delta(q, \varepsilon, X) = \{(q, \varepsilon)\}
(e) \delta(P,1,X) = \{(P,\epsilon)\}
(f) \delta(P,0,z0) = \{(q,z0)\}\ (16)
7. Construct CFG for the following PDA where \delta is given by,
P=(\{q0,q1\},\{0,1\},\{X,Z0\},\delta,q,z0,\Phi)
(a) \delta(q0,0,z0) = \{ (q0,Xz0) \}
(b) \delta(q0,0,X) = \{ (q0,XX) \}
(c) \delta(q0,1,X) = \{ (q1,\epsilon) \} (8) [APR/MAY 2018]
8. Convert PDA to CFG. PDA is given by P = (\{p, q\}, \{0, 1\}, \{X, Z\}, \delta, q, Z), \delta is defined by
\delta(p,1,Z) = \{(p, XZ)\},\
\delta(p, \varepsilon, Z) = \{(p, \varepsilon)\},\
\delta(p,1,X) = \{(p, XX)\},\
\delta(q,1,X)=\{(q, \in)\},
\delta(p,0,X) = \{(q, X)\},\
\delta(q,0,Z) = \{(p,Z)\}, (Nov/Dec 2015) (16)
```

Converting CFG To PDA

- 9. Construct the PDA for the following grammar $E \rightarrow E+E \mid E*E \mid a$ (8)
- 10. Consider the grammar G=(V,T,P,S) when $S \to aA$, $A \to aABC/bB/a$, $B \to b$, $C \to c$ and find the PDA.(8)
- 11. Construct the CFG for $L = \{0n10 \text{ n} \mid n \ge 0\}$ and use it to construct PDA.(8) DETERMINISTIC PUSHDOWN AUTOMATA
- 12. What are deterministic PDA's? Give example for Non-deterministic and deterministic PDA?
- (8) (Nov/Dec 2015)

PROBLEMS ON PUMPING LEMMA

- 13. State pumping Lemma for CFL. Use pumping lemma to show that the language $L = \{ aibick \mid i < j < k \} \text{ is not a CFL. (8) } [APR/MAY 2018]$
- 14. Show that the language $L = \{ a^n b^n c^n / n > 0 \}$ is not a context free language. (8) [APR/MAY 2018]

UNIT-4

TURING MACHINE

PART-A

- 1. What is a Turing Machine?(MAY/JUNE-16) [APR/MAY 2018]
- 2. What is a multitape Turing machine?(NOV/DEC-15)
- 3. Write about the chomskian hierarchy of languages.(APR/MAY-17) [APR/MAY 2018]
- 4. What is halting problem?(APR/MAY-17)
- 5. Define instantaneous description and move of a turing machine.
- 6. what are the features of universal turing machine?
- 7. What is meant by multihead turing machine?
- 8. What are the applications of Turing machine? (Dec-12)
- 9. List out techniques for Turing machine construction.(Dec -13)
- 10. What are the possibilities of a TM when processing an input string?
- 11. What are the techniques for Turing machine construction?
- 12. Differentiate Multitape and Multitrack machines.(Dec-08)
- 13. When is checking off symbols used in TM?
- 14. What is a 2-way infinite tape TM?
- 15. What are the reasons for a TM not accepting its input?
- 16. Construct a Turing machine to compute 'n mod 2' where n is represented in the tape in unary form consisting of only 0's. (May 11)
- 17. Design a Turing machine with not more than states that accepts languages a $(a+b)^*$. Assume $\Sigma = \{a, b\}$ (May-05).
- 18. What are the Comparison of FM, PDA and TM?
- 19. Define Power of turing Machine.
- 20. What are the differences between a finite automata and a Turing machine?(APR/MAY-16)

PART-B

TURING MACHINE

- 1. Explain the programming techniques for Turing Machine construction. (14)(Nov/ Dec-12)(13)
- 2.Explain briefly about Two way Turing Machine.(7) (May/June-04,05, Nov/Dec-05,08,09,12,13)

COMPUTATIONAL LANGUAGES AND FUNCTIONS

- 3. Construct TM for the language $L = \{a^n b^n \}$ where $n \ge 1$. (May 09)(7)
- 4. Construct a TM for $L = \{1^n0^n1^n / n \ge 0\}$. (May -12)(6)
- 5. Construct TM for performing subtraction of two unary numbers f(a-b) = c where a is always greater than b. (Dec -03, Dec 05, May -11)(7)

TWO WAY TURING MACHINE

- 6. Construct a TM for a language having equal number of a's and b's.(7)
- 7. Construct a TM for a language obtaining two's complement of a binary number. (7)
- 8. Construct a TM for reversing a binary string on the input tape.(6)
- 9. Build a multitrack turing machine for checking whether given number is prime or not?(7)

TYPES OF TURING MACHINE

11.Explain about Types of Turing machine.(7)

HALTING PROBLEM

12. Explain Halting problem. Is it solvable or unsolvable problem? Discuss.(13) (May/June-16)

CHOMSKY HIERARCHY OF LANGUAGES

- 13.Explain about the Chomsky hierarchy of languages.(DEC-15)(7)
- 14.construct Turing machine perform unary multiplication. [APR/MAY 2018]

UNIT-5

UNSOLVABLE PROBLEMS AND COMPUTABLE FUNCTIONS PART-A

- 1. When a problem is said to be decidable and give an example of undecidable problem. (Nov/Dec 2015)
- 2. Show that the complement of a recursive language is recursive.(Dec-04,may-05)
- 3. Give two properties of Recursively Enumerable Sets which are undecidable.
- 4. When a language is said to be recursive? Is it true that every regular set is not recursive?(Nov/Dec -05)
- 5. Differentiate between recursive and recursively enumerable languages.(Apr/May-07)
- 6. When do you say a problem is NP-hard?(Dec-09)
- 7. Mention the difference between P and NP problems.
- 8. What is recursively enumerable? (May-12,Nov/Dec-13) [APR/MAY 2018]
- 9. Show the union of recursive language is recursive.
- 10. What are a) Recursively Enumerable b) Recursive sets? (Nov/Dec-13)
- 11. Define the class NP problem.(Nov/Dec-13)
- 12. What do you mean by universal turing machine?(Nov/Dec-05,13)
- 13. Define the classes P and NP problems. (May-14)
- 14. When a recursively enumerable language is said to be recursive? Is it true that the language accepted by a non-deterministic Turing machine is different from recursively

enumerable language? (May/June 2016)

- 15. What are the different types of grammars/languages?
- 16. Define PCP or Post Correspondence Problem?
- 17. Define MPCP or Modified PCP.
- 18. What is a universal language Lu? (Nov/Dec 2015) [APR/MAY 2018]
- 19. Define Rice Theorem?
- 20. What is primitive recursive function?(May-2017)

PART-B

- 1. (i) Prove that "MPCP reduces to PCP". (10) (Nov/Dec 2015)
 - (ii) Discuss about the tractable and intractable problems. (6) (Nov/Dec 2015)
- 2. (i) State and explain RICE theorem. (10) (Nov/Dec 2015)
- (ii) Describe about Recursive and Recursively Enumerable languages with examples. (6)
- 3. What is a universal Turing machine? Bring out its significance. Also construct a Turing
 - machine to add two numbers and encode it. (16) (May/June 2016)
- 4. What is a post corresponding problem (PCP)? Explain with the help of an example.(10) (May/June 2016)
- **5.**Explain recursive and recursive enumerable language with suitable example.(16) (May-2017)
- 6.Explain Tractable and intractable problems with suitable example.(16) (May-2017)
- 7.Describe about the Universal TM.(7)
- 8.rite notes on primitive recursive function. [APR/MAY 2018]
- 9. Write note on NP complete problem and polynomial time reduction. [APR/MAY 2018]